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XFEL Project - brief overview

« 4! generation SR user facility with SASE-FEL concept in
the 1 — 100 Angstroem (= 0.5A) wavelength (1st
harmonic) and 100fs (= < 1fs) pulse length regime

* |n 1ststage 3 SASE & 2 spontaneous undulator beam
lines, 10 experimental stations

* Driver: 1.5km linac in TRESEA technology, 20GeV
beam energy @ 23MV/m gradient
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Overview cont’d

« German government Feb. 2003: go-ahead for XFEL as
European project, incl. funding 50% of total 684 M€ (year
2000) project cost, + contribution from Lander HH &
Schleswig-Holstein, ~ 40% European Partners

* Project organisation at Europ. Level (scientific/technical
& administrative/financial) ongoing, completed in 2005
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Accelerator reference parameters

Main linac

Energy gain 0.5 2 20 GeV
# installed modules 116

# active modules 104

acc gradient 22.9 MV/m
# installed klystrons 29

Bunch spacing 200 ns
beam current 5 mA
power->beam p. klystron |3.8 MW
incl. 10% + 15% overhead | 4.8 MW
matched Qey 4.6-10°

RF pulse 1.37 ms
Beam pulse 0.65 ms
Rep. rate 10 Hz

Av. Beam power * 650 kW
Total AC power ~ 9 MW

* Power limitation to ~300kW per beamline - solid beam dump possible
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Photon wavelength vs. acc gradient
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Photon wavelength vs E_acc, reference point
1 Angstroem at 17.5 GeV
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- 25 GeV is reasonable upper limit for layout of beam line magnets
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beam lines
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Linac technology

« Will build 120 accelerator modules (~ 1000 cavities) and
32 RF stations in industry — requires everything also
needed for the the LC, except:

— 17m (12 cav’s) instead of 12m (8 cav’s) modules (marginal
gain in fill factor)

— Shortened inter-cavity spacing & superstructure (fill
factor/cost advantage not well balanced with extra R&D
effort)

— REF stations de-rated in peak power — not in average power!
(higher rep rate/duty cycle desirable by users)
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max rep rate and beam pulse length vs. E_acc
Q_ext varied with E_acc (I_beam=5mA const.)

& f rep[HZ]
= cryo-limit
250 ® T beam[ms] 0.80
|
L g (]
200 1 a 1 0.60
| - .
N 150 ¢ .t
§ S . " '\ + 0.40
= 100 * u"
e |
| " \
] + 0.2
50 s 0%’ 0.20
L X3

0 T T T T T 0 00
0 5 10 15 20 T 25 30
E_acc [MV/m] 20GeV

Cryogenic plant equal to one of the six TESLA-500 LC plants -
Cryogenic limit for CW operation is E,.. = 7MV/m (6 GeV), if Q,=2-101°
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Layout with single linac tunnel

30 cm > b% cm
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Figure 3. Main LINAC, Damping Ring & Klystron Station
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scaling factor 2 for some of the XFEL parms)

Beam dynamics

(assuming same alignment tolerances; comparison not exhaustive; rough

Issue parameter TESLALC XFEL comment
m.b. transverse | peak orbit 10 0.26 - 0.40 intra-train
wake ampl. feed-
forward!
BC /| ®gf error AE, time, o, | 0(0.1°) 0(0.01°)
Synchronisation | At <0.5ps <0.05ps
1um Orbit stab. | Ac/e | Ay’ few % 0.1¢’ intra-train
BDS / undulator feedback!
Energy jitter AEJE 0(107) (010
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Beam dynamics cont'd

 |nertial an non-inertial (CSR!) space charge effects very critical for
XFEL - advanced instrumentation and beam diagnostics required
(e.g., bunch slice analysis)
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« We have obtained and will obtain more invaluable experience from
TTF & VUV-FEL!
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Intra-train beam stabilisation

 From ground vibration: jitter ~ 0.1c at end of linac

— Can be enhanced during “single events” e.g. heavy traffic, and by quad
support eigenmodes

— Other effects: stray fields, HOMs, ...

« - feedback system between linac and distribution to
undulators

I\IIIIIIIIIIIIIIIIIIIIILIIIIIII
e \_\/_/

user bunches Alignment bunches

Also active stabilisation of energy and possibly other beam parameters
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Different users — different time structures

a.equal filling b. equal filling with variable

« Generation of bunch train patterns: number of bunches

— At the source = varying transient A ' J s

effects in the entire accelerator

(handled e.g. by the LLRF system) podBeiiie  EnRokans
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Conclusions

« Major components of the XFEL facility are the same as
(or very similar to) the ones needed for the s.c. Linear
Collider

« The benefits of the XFEL project for a later LC project
regarding accelerator design, industrialisation,
fabrication and testing of components, operational
aspects (controls, reliability, MPS, ...) are obvious

 last, but certainly not least, the expertise and motivation
of the scientists, engineers, technicians, ... involved in
the preparation and construction of the XFEL represent
an invaluable “human capital” for a future s.c. LC project
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